Physiological Sciences transformation

A Midlands Approach

Peter Bill
Midlands Chief Scientific Officer
The beginning

- Respiratory Physiology
- Cardiac Physiology
- Neurophysiology
- Audiology
- Gastro Intestinal Science (GI)
- Urology
- Ophthalmic and Vision Science
- Vascular Science

- Subject Matter Experts identified
- Development of template
 - CDC
 - Business intelligence
- Information gathering
- Reviewed at hackathon event
- Outputs guide implementation
The case for change

Figure 1: Number of patients waiting 6+ weeks at month end for a diagnostic test

<table>
<thead>
<tr>
<th>Diagnostic Test</th>
<th>Average growth p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>colonoscopy</td>
<td>5.30%</td>
</tr>
<tr>
<td>Flexi Sig</td>
<td>8.40%</td>
</tr>
<tr>
<td>Gastroscopy</td>
<td>3%</td>
</tr>
<tr>
<td>Echocardiography</td>
<td>5.70%</td>
</tr>
</tbody>
</table>

Source: NHS England, Monthly Diagnostic Waiting Times and Activity Data (DM01)

Figure 2: CT scanners per 10,000 population: international comparisons (2017)

Figure 3: MRI scanners per 10,000 population: international comparisons (2017)

Source: OECD. 2017. OECD diagnostic exams and population data
Recommendations

- Workforce
- Delivering the change
- New service delivery models
- Equipment & Facilities
- Digitisation & Connectivity
Outputs of the hackathon event

• Hackathon event 16th April
• Faculty:
 • Sir Mike Richards
 • Prof Berne Ferry
 • Dr Martin Allen
 • Regional NHSEI diagnostic board team
 • Regional Chief Healthcare Scientists
• Attendees
 • Total 141
 • 127 Midlands
 • 14 out of region
 • Approx. 50/50 split clinical vs managerial
• Midlands key themes identified/to be addressed
 • Data/business intelligence
 • Workforce
 • Digital connectivity
 • Community diagnostic centres

<table>
<thead>
<tr>
<th>Hackathon 16.04.21 Breakout room numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workshop session 1</td>
</tr>
<tr>
<td>Digital/Connectivity</td>
</tr>
<tr>
<td>Workforce/Training</td>
</tr>
<tr>
<td>Workshop session 2</td>
</tr>
<tr>
<td>Audiology</td>
</tr>
<tr>
<td>Cardiac Physiology</td>
</tr>
<tr>
<td>Gastrointestinal (GI) Physiology</td>
</tr>
<tr>
<td>Neurophysiology</td>
</tr>
<tr>
<td>Ophthalmic and Vision Science</td>
</tr>
<tr>
<td>Respiratory Physiology (including Sleep Physiology)</td>
</tr>
<tr>
<td>Urodynamics</td>
</tr>
<tr>
<td>Vascular Technology</td>
</tr>
</tbody>
</table>
Coding

- SME developed ‘long list’ of investigations
- Variability in coding system used
- Regional grab of random sample tests showed wide variation
- Decision by PS board to develop BI solution

<table>
<thead>
<tr>
<th>Activity Category</th>
<th>Volume of providers with apparently meaningful levels of activity reported via SUS</th>
<th>Percentage of providers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airway responsiveness</td>
<td>18</td>
<td>43.9%</td>
</tr>
<tr>
<td>Breathing mechanics</td>
<td>11</td>
<td>26.8%</td>
</tr>
<tr>
<td>Cardiac</td>
<td>24</td>
<td>58.5%</td>
</tr>
<tr>
<td>Complex sleep investigations</td>
<td>17</td>
<td>41.5%</td>
</tr>
<tr>
<td>Dynamic lung assessments</td>
<td>21</td>
<td>51.2%</td>
</tr>
<tr>
<td>Exercise testing</td>
<td>18</td>
<td>43.9%</td>
</tr>
<tr>
<td>Full lung function</td>
<td>12</td>
<td>29.3%</td>
</tr>
<tr>
<td>GI Physio</td>
<td>21</td>
<td>51.2%</td>
</tr>
<tr>
<td>Home diagnostic sleep studies</td>
<td>20</td>
<td>48.8%</td>
</tr>
<tr>
<td>Neurophysiology</td>
<td>16</td>
<td>39.0%</td>
</tr>
<tr>
<td>Oxygen assessment</td>
<td>17</td>
<td>41.5%</td>
</tr>
<tr>
<td>Ventilation</td>
<td>22</td>
<td>53.7%</td>
</tr>
</tbody>
</table>

Excluding providers with minimal comparative levels of activity expressed, i.e., less than 40 in 2019 against comparators reporting activity in the hundreds. 2020 activity also extracted as part of this exercise.
Data/business intelligence

Assess

Diagnostic Waiting times and activity (DM01) dataset widely used
Limited and fails to describe PS services
No unified asset register

Plan

SME long list of tests provided to capture all diagnostic area within the speciality
Grouped tests to provide a shorter 'high-level' list for data monitor
Mirror DM01 data collection for regional trend analysis
Include asset register to understand existing equipment infrastructure (one off collection plan to revisit annually and as part of the CDH development plans)

Implement

Regional sign off
Request data collection from systems
Commence monthly returns
Review datasets at Physiological Sciences Network
Share regular updates at Regional diagnostics board
Developing the BI solution
<table>
<thead>
<tr>
<th>Activity during month</th>
<th>Number weeek</th>
<th>Planned tests / procedures</th>
<th>Unscheduled tests / procedures</th>
<th>Waiting list tests / procedures (including closed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evoked</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hearing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paediatric</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Physiological Science workforce - issues

- PS services under resourced and under appreciated
- Lack of high level Healthcare Science leadership roles reflective of professional background
- Training capacity issues
- Difficult to robust workforce plan in small teams
- Limited understanding of training opportunities
- Difficulty advancing practice, recognition of skill and knowledge
- Variation in registration status
- Retention challenging in some shortage occupation disciplines
- Current issues with burn out and concerns regarding back log
- Regional PS workforce review funded by Health Education England
<table>
<thead>
<tr>
<th>Physiological Science workforce opportunities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visibility of services with new data collection</td>
</tr>
<tr>
<td>Create HCS leadership roles within organisations and systems</td>
</tr>
<tr>
<td>Development of PS regional networks</td>
</tr>
<tr>
<td>Development of training academies/consortia</td>
</tr>
<tr>
<td>Develop practice educator roles within organisations and systems</td>
</tr>
<tr>
<td>Design training to meet demands of developing new workforce</td>
</tr>
<tr>
<td>Grow numbers rapidly and develop career opportunities</td>
</tr>
<tr>
<td>Utilise HCS leadership structure to workforce plan at system level</td>
</tr>
<tr>
<td>Tackle registration inequalities</td>
</tr>
<tr>
<td>‘Passport’ transferable skills to facilitate multi-site working</td>
</tr>
<tr>
<td>Champion consultant HCS roles</td>
</tr>
<tr>
<td>Engage and educate school children on PS careers</td>
</tr>
</tbody>
</table>
Digital Connectivity – Midlands situation

SYSTEMS
5 out of 17 systems were over 10 years old with 80% of respondents stating no replacement was planned

HOSPITAL INFORMATION SYSTEM INTERFACING (INTERNAL)
Circa 80% of specialty systems were not interfaced to the main hospital system care record

EXTERNAL INTERFACING (CDH READY)
66% not integrated, 24% partially integrated (less than half of these are able to share diagnostic image information) and 10% fully integrated

REPORTING
62% of respondents were able to remotely view investigation reports generated by specialist test equipment (part of operational activity reporting)

AI / WEARABLE DEVICES
A few excellent examples were provided: Sleep screening, ECG / Atrial Fibrillation (AF) and Hearing aids

NEW SYSTEMS INNOVATION GROUP
The Digital session was very well attended (42 people) and there was great enthusiasm to form a group to explore innovation and best-in-class solutions and potentially create a specification where gaps in the market exist for Physio Science specialty area systems.
Digital Connectivity Key Messages

Highlights

• Diversity in equipment purpose and manufacturer
• Huge variability in equipment age and interoperability
• Variability in level of connectivity with hospital IT systems
• Long standing lack of required capital investment
• Commitment to set up a regional task and finish group
• Appetite to explore single solution

Recommendations

• Use BI template to ‘stock take’ current regional PS assets
• Identify regional digital lead with PS services in portfolio
• Establish connectivity strategy
• Explore single solution for data management
• Work with SME network to develop the solution
• Link to national team to support single strategy
Where are we now? the Team

Peter Bill
Regional Chief Scientific Officer

Claire Greaves
Regional Chief Scientific Officer

Dr Louise Stewart
Deputy Regional Diagnostic Lead

Dr Jo Horne
Regional Dean for Healthcare Science

Leigh Griffin
Workforce Consultant

Andrew Hall
Workforce Transformation Lead

Michelle Mercer
Diagnostic Programme Manager

Joe Sinnott
Programme Support Officer

Laura Morgan
Programme Support Officer

NHS England and NHS Improvement
Business Intelligence

- Data being collected
- Data quality improving
- Approx 50% providers
- System discussions
- Dashboard development
- Capacity/demand models
There are c1250 qualified Physiological Scientists (typically qualified at Masters level) and c500 practitioners (with undergraduate degrees, typically 2:1 or above)

The main areas of work are:-
- Cardiac Physiology
- Audiology
- Respiratory and Sleep
- Neurophysiology
- Ophthalmic/Vision Science
- Vascular Science

Most acute trusts provide cardiac physiology, audiology, neurophysiology and respiratory and sleep services

There are very few scientists working in GI and urodynamic services
Sickness levels are low, but many staff feel exhausted.
Vacancy levels are variable, and can be high, particularly away from conurbations/teaching hospitals.
Turnover levels are €8% per annum (quite low), although it is an ageing workforce, with over 1 in 8 scientists aged 55 or over. 1 in 3 are under 35.
Approximately 1 in 4 Scientists are of a non-white ethnic origin.
Extended practice, with scope to ease pressures on other disciplines, is evidenced but highly variable, with scope for greater extension and consistency.
Training and supervision requirements place considerable demands on qualified staff, limiting staff development.
HEE workforce report

Demographic change – e.g., 1 in 4 people will have some degree of hearing loss by 2031

Unmet/ill-met/latent needs – e.g., cardiac, sleep, audiology

Service backlogs ‘post’ pandemic

Scope for advanced scientific practice – variably actioned

Changing service delivery models – esp. the development of Community Diagnostic Centres (bases for much future scientific work)

Technological change (incl., the advent and spread of AI in diagnostics)
HEE workforce report - recommendations

- To increase the number of qualified scientists and practitioners by 20% over the next five years – i.e., c300 WTE

- Particular areas of growth include Cardiac Physiology (we are seeing a continuing growth in demand for echoes), Respiratory and Sleep services and the development of a Scientific workforce to support GI/Urodynamics

- Community Diagnostic Centres are likely to include Cardiac Physiology, Respiratory and Sleep, Audiology and Urodynamic services
HEE workforce report – other key recommendations

• Ensure staffing levels are adequate to avoid service closure at times of annual leave – e.g., sleep services

• Support the creation of effective Business Intelligence on Physiological Sciences to enable benchmarking and inform value-based investment

• Strengthen training capacity at all levels (Practitioners, Scientist and Higher Specialist Scientific Training through the enhancement of training programmes and extension of targeted programmes – e.g., echos)

• Create a cohort of funded trainees for deployment across the East and West Midlands

• Establish/strengthen sub-regional networks

• Strengthen leadership and voice

• Improve the understanding of and engagement with Physiological Sciences
Digital

• More challenging due to the varied equipment and maturity
• Working on a digital maturity matrix/assessment
• What are the ‘stones in the shoe’
• Engagement with systems to validate
• Linked into AHSN to pose issues through manufacturer portal
• Stocktake
Targeted approach

- Practice educators
- B2-4 apprenticeships
- ETP
- Echo survey
- Spirometry data
National overlap and interaction

- National PS transformation board
- Led by national director for PS
- Governance structure developed
- Regional PS reporting
- Spending review includes growth in PS
 - Built around CRS
 - Education infrastructure growing
 - Training to meet demands of services
 - Much more needed
Prof. Mike Richard’s Review

New Care Model
Workforce
Equipment & Facilities
Digital & Data
Enablers

DATA COLLECTION

Hackathon output lessons learned – to adopt and build on dataset and work with stakeholder groups on logistics
Aim to have a tiered approach in the data collection and ensure the prioritisation is in line with Prof. Mike Richard’s diagnostics review.
Linking in with NHSEI data collection leads in pathology and imaging to discuss logistics around IG, hosting data, data collection portal and establish a timeline/resourcing.
Programme Governance

Programme Board established, meets monthly. Includes 2 representatives from each Region (Phys Science Programme lead and Regional Healthcare Science Lead). Highlight reports from national and Regional teams.

Leadership Team will comprise:
- Martin Allen – National Speciality Advisor
- Nathan Hall – Head of Programme
- Amy Taylor-Gonzalez – Implementation Lead
- Karen Pearson – Senior Project Manager
- Karen Luck – Project Manager
- Lucia Katsumbe – Data Hub Lead

Clinical Advisory Network will include subject matter experts and professional association representatives across the 8 disciplines.
PS tests captured through DM01 demonstrate high % of +6 week waits, high median wait times and high monthly activity growth rates compared to other modalities

6 Physiological Science tests are captured in the DM01 dataset.

In March 2022 across those 6 PS tests, 34.8% of patients were waiting more than 6 weeks, compared to 20.5% in Imaging and 34.8 in Endoscopy.

Echocardiography represents 7% of the overall activity volumes captured in DM01, 18% of the 6 week wait total and 22% of 13+ weeks.

Of the 6 tests captured in DM01, total test volumes vary significantly between these tests for example during March 2022 the NHS in England recorded 143,404 echocardiographs and 828 Electrophysiology tests.

There has been significantly higher rates of monthly activity growth between March 2021 and March 2022 across the physiological science tests captured in DM01 than for imaging and endoscopy. For example, there has been an average monthly growth in sleep study activity of 2.1% per month (8,880 in March 2021 compared to 11,386 in March 2022)

Many important physiological science tests are not reported through DM01.
Our ambition is to deliver annual national data collections for all 8 disciplines of physiological science. Workbooks, detailing the data collection requirements & fields have been developed with expert working groups for all 8 physiological science disciplines. Each workbook includes detailed collections covering:

- Service Activity/waiting list by test,
- Facilities and kit,
- Workforce
- Digital maturity.

Each workbook requires a web-collection tool to be build (by the Applications & Development Team) and the tool requires piloting in a number of provider Trusts. Results of piloting inform updates to the collection prior to the final version of the web-collection tool being ready for national launch.

Final amendments are being made to the cardio-respiratory workbook post piloting and this should go live within weeks.
PM – SR investments 22-25

<table>
<thead>
<tr>
<th>People Plan</th>
<th>Workforce Levers</th>
<th>2022/23 Interventions</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triple Aim</td>
<td></td>
<td>Expansion following pilot of Echocardiography PG Cert - 60 people</td>
<td>£2,400,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21 Practice Educators - in Trusts, linked to academies for Echo, Respiratory, Sleep and Cardiac</td>
<td>£1,345,911</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expand cardiac STP numbers in Respiratory Physiology – 15 (3 years)</td>
<td>£600,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expand cardiac HSST numbers in Respiratory Physiology – 10 (5 years)</td>
<td>£160,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expand cardiac STP numbers in Echo – 15 (3 years)</td>
<td>£600,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expand cardiac HSST numbers in Echo – 10 (5 years)</td>
<td>£160,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Training Grants for 25 level 6 cardiac scientists in Electrophysiology procedures</td>
<td>£500,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39 Band 2 training grants for sleep disorders assistants.</td>
<td>£312,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>266 Band 2 Training Grants for physiological measurement assistants</td>
<td>£2,130,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>174 Band 4 Training Grants to help deliver required numbers of physiological measurement associates.</td>
<td>£1,740,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>76 Band 4 Training Grants to increase physiological Sleep disorder associates</td>
<td>£608,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64 PG Cert Sleep disorders University fees and trainee training grant</td>
<td>£1,280,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 Grad diploma in Respiratory Physiology for University fees & trainee training grant</td>
<td>£1,000,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 Grad diploma in Cardiac Rhythm for University fees and trainee training grant</td>
<td>£1,000,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2023/24 Interventions</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expansion following pilot of Echocardiography PG Cert. 60 people</td>
<td>TBC</td>
</tr>
<tr>
<td>21 Practice Educators - in Trusts, linked to academies for Echo, Respiratory, Sleep and Cardiac</td>
<td>£1,345,911</td>
</tr>
<tr>
<td>Expand cardiac STP numbers in Respiratory Physiology – 15</td>
<td>£1,200,000</td>
</tr>
<tr>
<td>Expand cardiac HSST numbers in Respiratory Physiology – 10</td>
<td>£320,000</td>
</tr>
<tr>
<td>Expand cardiac STP numbers in Echo – 15</td>
<td>£1,200,000</td>
</tr>
<tr>
<td>Expand cardiac HSST numbers in Echo – 10</td>
<td>£320,000</td>
</tr>
<tr>
<td>Training Grants for 25 level 6 cardiac scientists in Electrophysiology procedures</td>
<td>£500,000</td>
</tr>
<tr>
<td>49* Band 2 training grants for sleep disorders assistants.</td>
<td>£312,000</td>
</tr>
<tr>
<td>266 Band 2 Training Grants for physiological measurement assistants</td>
<td>£2,130,000</td>
</tr>
<tr>
<td>174 Band 4 Training Grants to help deliver required numbers of physiological measurement associates.</td>
<td>£1,740,000</td>
</tr>
<tr>
<td>76 Band 4 Training Grants to increase physiological Sleep disorder associates</td>
<td>£608,000</td>
</tr>
<tr>
<td>64 PG Cert Sleep disorders University fees and trainee training grant</td>
<td>£1,280,000</td>
</tr>
<tr>
<td>50 Grad diploma in Respiratory Physiology for University fees & trainee training grant</td>
<td>£1,000,000</td>
</tr>
<tr>
<td>50 Grad diploma in Cardiac Rhythm for University fees and trainee training grant</td>
<td>£1,000,000</td>
</tr>
</tbody>
</table>

Key:
- Supply
- Infrastructure
- Upskilling
- New Role
- Value may change *

Annual Funding Allocation
- **2022/23**: **£13,835,911**
- **2023/24**: **£13,048,911** *
- **2024/25 +**: **£14,888,911** *
Developing Physiological Science Networks

The Likely Functions of Physiological Science Networks

• Plan and manage capacity and demand for physiological science services
• Stewardship of resources, including capital planning and collective procurement
• Workforce planning, including addressing training, skill mix, insourcing, retention and new ways of working
• Implement digital solutions to improve service delivery and outcomes
• Quality Management and Improvement, including supporting service accreditation
• Collaboration: including working together at local, regional and national levels
• Leading rapid evaluation and implementation of new innovations

The Likely Form of Physiological Science Networks

• Single operational governance model with clearly defined clinical leadership
• Operating model that allows oversight of clinical performance, clinical governance and quality
• Discipline specific focus within overarching physiological science network
• Regional footprint (to ensure scale and influence)
• Aligned to and embedded within Integrated Care Systems
• Aligned to disease/pathway specific networks

Factors for further Consideration and Debate

• Balancing separate discipline focus with benefit of “umbrella” support and leadership for entire network, ability to facilitate interdisciplinary approaches and reduced bureaucracy
• Different disciplines may require different geographical footprints due to nature and scale of speciality

Next Step: Stakeholder Workshop to further develop model and review of current early network arrangements across each Region
Seat at the table